Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effects of Oxygen Enhancement on the Emissions from a DI Diesel via Manipulation of Fuels and Combustion Chamber Gas Composition

2000-03-06
2000-01-0512
Oxygen enhancement in a direct injection (DI) diesel engine was studied to investigate the potential for particulate matter and NOx emissions control. The local oxygen concentration within the fuel plume was modified by oxygen enrichment of the intake air and by oxygenating the base fuel with 20% methyl t-butyl ether (MTBE). The study collected overall engine performance and engine-out emissions data as well as in-cylinder two-color measurements at 25% and 75% loads over a range of injection timings. The study found oxygen enhancement, whether it be from intake air enrichment or via oxygenated fuels, reduces particulate matter, the effectiveness depending on the local concentration of oxygen in the fuel plume. Since NOx emissions depend strongly on the temperature and oxygen concentration throughout the bulk cylinder gas, the global thermal and dilution effects from oxygen enrichment were greater than that from operation on oxygenated fuel.
Technical Paper

Modeling of Soot Formation During DI Diesel Combustion Using a Multi-Step Phenomenological Model

1998-10-19
982463
Predictive models of soot formation during Diesel combustion are of great practical interest, particularly in light of newly proposed strict regulations on particulate emissions. A modified version of the phenomenological model of soot formation developed previously has been implemented in KIVA-II CFD code. The model includes major generic processes involved in soot formation during combustion, i.e., formation of soot precursors, formation of surface growth species, soot particle nucleation, coagulation, surface growth and oxidation. The formulation of the model within the KIVA-II is fully coupled with the mass and energy balances in the system. The model performance has been tested by comparison with the results of optical in-cylinder soot measurements in a single cylinder Cummins NH Diesel engine. The predicted soot volume fraction, number density and particle size agree reasonably well with the experimental data.
Technical Paper

Modeling the Effect of Engine Speed on the Combustion Process and Emissions in a DI Diesel Engine

1996-10-01
962056
Previous studies have shown that air motion affects the combustion process and therefore also the emissions in a DI diesel engine. Experimental studies indicate that higher engine speeds enhance the turbulence and this improves air and fuel mixing. However, there are few studies that address fundamental combustion related factors and possible limitations associated with very high speed engine operation. In this study, operation over a large range of engine speeds was simulated by using a multi-dimensional computer code to study the effect of speed on emissions, engine power, engine and exhaust temperatures. The results indicate that at higher engine speeds fuel is consumed in a much shorter time period by the enhanced air and fuel mixing. The shorter combustion duration provides much less available time for soot and NOx formations. In addition, the enhanced air/fuel mixing decreases soot and NOx by reducing the extent of the fuel rich regions.
Technical Paper

In Cylinder Augmented Mixing Through Controlled Gaseous Jet Injection

1995-10-01
952358
An investigation was performed on a direct injection diesel engine equipped with a gaseous injector to determine the effects of augmented mixing on emission characteristics. The gaseous injector introduced a jet of gas of particular composition in the cylinder during the latter portion of diesel combustion. This injector was controlled to inject the gas at specific engine timings and at various injection pressures. Engine experiments were done on a LABECO/TACOM single cylinder, direct injected, 1.2 liter, four stroke diesel engine. This engine was operated at 1500 rpm at an equivalence ratio of 0.5 with simulated turbocharging. The fuel injection timing was changed for some cases to accommodate the gaseous injection. Exhaust particulate emissions were measured with a mini-dilution tunnel. All other emissions data were measured on a REGA 7000 Real-Time Exhaust Gas Analyzer Fourier Transform Infrared (FT-IR) system.
Technical Paper

Optical Measurements of Soot Particle Size, Number Density, and Temperature in a Direct Injection Diesel Engine as a Function of Speed and Load

1994-03-01
940270
In-cylinder measurements of soot particle size, number density, and temperature have been made using optical measurements in a direct injection diesel engine. The measurements were made at one location approximately 5 mm long and 1.5 mm wide above the bowl near the head. Two optical techniques were used simultaneously involving light scattering, extinction and radiation. An optical probe was designed and mounted in a modified exhaust valve which introduced a beam of light into the cylinder and collected the scattered and radiating light from the soot. The resulting measurements were semi-quantitative, giving an absolute uncertainty on the order of ± 50% which was attributed mainly to the uncertainty of the optical properties of the soot and the heterogeneous nature of the soot cloud. Measurements at three speeds and three overall equivalence ratios were made.
Technical Paper

In-Cylinder Soot Deposition Rates Due to Thermophoresis in a Direct Injection Diesel Engine

1992-09-01
921629
An investigation of the mechanism causing in-cylinder soot deposition in a direct injection diesel engine was carried out. First, an analytical study was undertaken to determine which of following possible deposition mechanisms, thermophoresis, Brownian diffusion, turbulent diffusion, inertial impingement, or electrophoresis were responsible for the deposition of the soot on the combustion chamber walls. Based on a series of numerical models comparing each mechanism under conditions typical of diesel engine combustion, thermophoresis was singled out as the most likely cause of in-cylinder soot deposition. Second, an experiment was performed to test the hypothesis that the soot deposition was caused by thermophoresis. An optical probe was designed to fit an access port in the cylinder head of a Cummins NH250 single cylinder test engine.
Technical Paper

The Effect of Fuel Aromatic Structure and Content on Direct Injection Diesel Engine Particulates

1992-02-01
920110
A single cylinder, Cummins NH, direct-injection, diesel engine has been operated in order to evaluate the effects of aromatic content and aromatic structure on diesel engine particulates. Results from three fuels are shown. The first fuel, a low sulfur Chevron diesel fuel was used as a base fuel for comparison. The other fuels consisted of the base fuel and 10% by volume of 1-2-3-4 tetrahydronaphthalene (tetralin) a single-ring aromatic and naphthalene, a double-ring aromatic. The fuels were chosen to vary aromatic content and structure while minimizing differences in boiling points and cetane number. Measurements included exhaust particulates using a mini-dilution tunnel, exhaust emissions including THC, CO2, NO/NOx, O2, injection timing, two-color radiation, soluble organic fraction, and cylinder pressure. Particulate measurements were found to be sensitive to temperature and flow conditions in the mini-dilution tunnel and exhaust system.
Technical Paper

Predictions of Autoignition in a Spark-Ignition Engine Using Chemical Kinetics

1986-03-01
860322
A model developed to predict outoignition is used with data from a premixed charge, spark-ignition engine. A detailed chemical kinetics mechanism is used to predict the reactions which occur in the end-gas and lead to autoignition. Experimental pressure data from a CFR engine are used in the model to determine end-gas temperatures. The initial temperature at the time of spark must be increased above the bulk temperature for the predicted time of outoignition to agree with the observed time. A method for estimating the initial temperature based on an adiabotic compression from the time of intake valve closing is presented. The predictions of the model are examined over a range of engine speeds and fuel-air equivalence ratios. The magnitude by which the initial temperature must be increased above the bulk temperature decreases with increasing engine speed. This magnitude follows a trend which can be related to a heat transfer correlation.
Technical Paper

Compression-Ignited Homogeneous Charge Combustion

1983-02-01
830264
Experimentally obtained energy release results, a semi-empirical ignition model, and an empirical energy release equation developed during this research were used to evaluate the combustion of compression-ignited homogeneous mixtures of fuel, air, and exhaust products in a CFR engine. A systematic study was carried out to evaluate the response of compression-ignited homogeneous charge (CIHC) combustion to changes in operating parameters with emphasis being placed on the phenomena involved rather than the detailed chemical kinetics. This systematic study revealed that the response of the combustion process to changes in operating parameters can be explained in terms of known chemical kinetics, and that through the proper use of temperature and species concentrations the oxidation kinetics of hydrocarbon fuels can be sufficiently controlled to allow an engine to be operated in a compression-ignited homogeneous charge combustion mode.
Technical Paper

Ethanol Fumigation of a Turbocharged Diesel Engine

1981-04-01
810680
Ethanol has been injected through an atomizing nozzle into the intake manifold of a four cylinder turbocharged diesel engine. It was found that to avoid liquid droplet impingement on the compressor blades the injector needed to be located downstream of the compressor, in the high pressure section of the inlet manifold. 160 proof and 200 proof alcohols were investigated with a series of percentage substitutions at different speeds and loads. The fumigation of ethanol resulted in a slight improvement in thermal efficiency at high loads and a small reduction at light loads. The ignition delay and rate of pressure rise also increased significantly when ethanol was added to the engine. A change in the proof of ethanol from 160 to 200 did not produce any noticeable change in engine performance. Emission measurements were also made and are discussed. The problem of obtaining uniform cylinder to cylinder distribution of alcohol has been encountered.
Technical Paper

A Study of Fuel Nitrogen Conversion, Performance, and Emission Characteristcs of Blended SCR-II in a High-Speed Diesel Engine

1981-02-01
810251
Engine operation with blended SRC-II and pyridine doped diesel fuel were compared relative to regular #2 diesel fuel in a 4-stroke, turbocharged, direct injection, high speed commercial diesel engine. The brake specific fuel consumption, (M-Joule/hp-hr), turbocharging, combustion characteristics and smoke did not change between blended SRC-II and regular #2 diesel fuel. This was expected since the sample fuels were blended to be of the same cetane number. The maximum torque, hydrocarbon and NOx emissions were higher for blended SRC-II. There was essentially no difference in the NOx measurements of the pyridine doped fuel and regular #2 diesel fuel. The NOx emission increase for the blended SRC-II is believed to be caused by the increased aromatic content of the blended SRC-II and not the fuel nitrogen conversion.
X